Localization of deformation in thin shells under indentation
نویسنده
چکیده
We perform a hybrid experimental and numerical study of the localization of deformation in thin spherical elastic shells under indentation. Past a critical indentation, the deformation of the shell ceases to be axisymmetric and sharp points of localized curvature form. In plates, these sharp points are known as d-cones. By way of analogy, regions of localization in shells are referred to as s-cones, for 'shell-cones'. We quantify how the formation and evolution of s-cones is affected by the indenter's curvature. Juxtaposing results from precision model experiments and Finite Element simulations enables the exploration of the frictional nature of the shell-indenter contact. The numerics also allow for a characterization of the relative properties of strain energy focusing, at the different loci of localization. The predictive power of the numerics is taken advantage of to further explore parameter space and perform numerical experiments that are not easily conducted physically. This combined experimental and computational approach allows us to gain invaluable physical insight towards rationalizing this geometrically nonlinear process. Thesis Supervisor: Pedro M. Reis Title: Esther and Harold H. Edgerton Assistant Professor of Mechanical Engineering and Civl and Environmental Engineering
منابع مشابه
Localized Structures in Indented Shells: A Numerical Investigation
We present results from a numerical investigation of the localization of deformation in thin elastomeric spherical shells loaded by differently shaped indenters. Beyond a critical indentation, the deformation of the shell ceases to be axisymmetric and sharp structures of localized curvature form, referred to as “s-cones,” for “shell-cones.” We perform a series of numerical experiments to system...
متن کاملElastic properties of hollow colloidal particles.
The elastic properties of micrometer-sized hollow colloidal particles obtained by emulsion templating are probed by nanoindentation measurements in which point forces are applied to solvent-filled particles supported on a flat substrate. We show that the shells respond linearly up to forces of 7-21 nN, where the indentation becomes of the order of the shell thickness (20-40 nm). In the linear r...
متن کاملVibration analysis of FGM cylindrical shells under various boundary conditions
In this paper, a unified analytical approach is proposed to investigate vibrational behavior of functionally graded shells. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stokes transformation. Material properties are assumed to be graded in...
متن کاملارائه مدل نیمه تجربی برای تغییر شکل پوستههای آلومینیمی با سر مخروط شکل تحت بارگذاری انفجاری (علمی-پژوهشی)
Due to the importance of determining the pelastic manner of thin wall shells against the explosive loading, up to the maximum process of deformation, examining the manner of this kind of structures is on the agenda.concidering repeated reaction of explosive shock wave from two ends and the walls of the structure, pressure distribution derived from explosion of explosive in closed shells, is too...
متن کاملFinite element analysis of elastic-plastic solids under Vickers indentation: surface deformation
Finite element modeling has been used to study the development of surface deformation during indentation with a Vickers indenter. A wide range of materials with different elastic modulus and yield stresses are examined. Results show that in a pyramidal indentation process, for a perfectly plastic material, sinking-in during loading can change to pile-up in unloading. This phenomenon depends on ...
متن کامل